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Recently, there has been a tendency to see natural phenomena as resulting from
the action of dynamical processes. These processes (and the objects to which
they give rise) are surprisingly often well characterised using some sort of hierar-
chical approach.

It is also one of the key features of fractal geometry that the action of dynam-
ical systems can result in intrinsically hierarchical structures. In this paper we
shortly outline the rapid progress which was made in analysis of fractals with the
wavelet transform (often, but not exclusively, making use of the derivatives of
the Gaussian kernel).

We demonstrate that the natural ability of the wavelet transform to analyse ob-
jects using both position and scale localised filters proves ideal in the context of
hierarchical formalism of fractal geometry. In addition to this, the inherent ro-
bustness of the transform provides reliable access to multi-scale representations.

1. INTRODUCTION

Just a selection of the titles of monographs or collected works: The Fractal
Geometry of Nature [1], Fractals Everywhere (2], Fractal Reviews in the Nat-
ural and Applied Sciences [3], would quickly give the reader an idea of the
universality of the concept of fractal geometry. Going through the subjects
of these books would confirm this impression. Indeed, fractals are found just
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about everywhere in natural phenomena, problems in engineering sciences, or
in works of art. Having realised this fact, one would expect that clear and
reliable recipes exist for the purpose of isolating and characterising fractals.
Unfortunately, in practical cases, the task of proving that the particular object
at hand is fractal, with the tools available, is to say the least unreliable.

Still, the intuition of common sense perception of fractals would indicate
something very different - it is enough to perform a simple experiment of break-
ing off the smaller and smaller branches from the broccoli bought in the nearby
greengrocer to get the feeling of the primary characteristic of its parts or frac-
tions. In case observations become difficult one might use a magnifying glass,
ideally bringing the size of the magnified branch to that of the original broccoli.
While we encourage the reader to convince himself, let us just point out that
the magnified branches would be very similar to the original broccoli, and this
feature, called self-similarity, turns out to be universal for fractal objects.

This is also the notion which, in all practical terms, loosely defines the
fractal, in spite of the existence of a variety of more or less advanced criteria
which generally can be referred to as fractal dimensions. Without going into
details, the dimensional characterisation of fractals although definitely of great
value, has one major shortcoming - it remains global in its very nature and
assigns, not always reliably, the object in question to some universality class.

Even though an admittedly complex structure, the broccoli in our exper-
iment is undoubtedly neither random, nor is it exactly self-similar. Yet the
dimensional characterisation would fail to distinguish it from these extremal
cases. Under successive magnifications, the complex structure appears to con-
sistently follow some principle, within the rather obvious finite size bounds of
flower resolution and the broccoli size. This thought is the key idea of the work
we shortly report here - there must be some construction rule apparently hidden
in the complex structure of a fractal. It can vary from completely deterministic
to completely random, still we propose that it is there!

This is also the problem formulation posed in the thesis work [4]. The
methodology we developed there is supposed to provide answers to the exis-
tence of a fractal problem through the recovery of the original construction rule
or its main characteristics. In its essence going to the very fundamental way
of looking at fractal objects, the main tool used to make this proposition plau-
sible is similar to that we used in our broccoli experiment - the mathematical
microscope - this is how the Continuous Wavelet Transform (CWT) was first
referred to in the context of fractal analysis [5].

We employed it to perform the analysis of some example fractal structures,
which we introduce in Section 2 of this work, and reveal their consistent scaling
behaviour - renormalisation structure, leading in turn to the construction rule
recovery. This approach is shown to extend the available dimensional charac-
terisation of fractals outlined in Section 3.

We introduce the CWT in Section 4, first shortly showing how it proved
to be particulary useful in local characterisation of singular detail essentially
contributing to a fractal’s shape. But more interestingly for our purpose, the
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property of inheriting the renormalisation properties of the invariant fractal ob-
ject by the wavelet transform is next used to build a bifurcation-based WTMB
representation representing the information on the scale-position localised (in-
variant) grid, allowing tracing the actions of the renormalisation group in the
wavelet decomposition.

The major feature of this approach, outlined further in Section 4, is the
possibility of verifying such a scale-space similarity in terms of invariance with
respect to some iterative functions (maps). Contrary to the methods known
from the field of fractal compression of images, which use a predefined class of
Iterated Function System functions [2] to approximate the invariance in ques-
tion, the approach we present aims at revealing the renormalisation involved in
the creation of the fractal, possibly bearing relevance to the underlying physical
phenomena.

Our hypothesis is therefore, that an object can be classified as a pre-fractal
if there exists a solution to the related inverse fractal problem; in other words,
if a set of construction rules can be found, which would define main (scaling)
characteristics of the object. Ultimately, the construction rule can, of course,
be expected to fully define the object within the scales where it is observed and
which allows arbitrary extrapolation in the scale domain.

As already mentioned, solving the inverse fractal problem for self-affine
functions is done by means of testing the invariance of the wavelet transform
modulus maxima representation of the function. For this purpose, several algo-
rithm designs are possible. The most reliable and powerful approach to date,
which we will also describe in some detail in Section 4, uses the topological
structure of the maxima lines and characteristic invariant points like bifur-
cations, inherently present in the wavelet transform in the form of relating
bifurcations to the maxima lines. ! This data-structure rather than a model
driven approach is, therefore, able to recover non-linear maps by its very virtue
of not being bound to a particular model.

Two and three dimensional fractals occur frequently in the real world, and
parameterization or cuts reducing dimensionality but retaining the fractal as-
pects of the object are not always straightforward or even possible. The ex-
tension to an intrinsically two dimensional analysis of fractals on one- to two-
dimensional support (embedded in 2D) is shortly discussed in Section 5.

2. VARIETY OF FRACTAL TYPES

2.1. Some well-known fractal sets

We will begin with the von Koch curve, perhaps the most familiar example of
fractal construction. It can be created by dividing a line segment L (constitut-
ing the so-called initiator, L = Fp) into three equal parts and then replacing
the middle one with two identical ones, which are joined to form an equilateral
triangle without a base, which fits precisely in the space left by the one re-
moved. The generator made in this way is next scaled by a factor 1/3 and used

1 A tree-matching technique for recovering maps was also developed by Arneodo et al. (6]
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recursively to replace each of the line segments of the previous constr'z.nctic?n
stage. See Figure 1. The procedure can be carried on indefinitely, regultmg in
an object, the so-called attractor set with somewhat strange properties: even
though the von Koch attractor is a curve, it has an infinite length in the llmlF,
as a simple calculation can show. On the other hand, its area in the plane is
zero, thus neither length nor area provide a useful measure of it. Moreover, it
is nowhere differentiable in the sense that one cannot define tangents to it at
any point.

FiGURE 1. The first four stages of generation (F;, i =0...3) of the von Koch
curve. The von Koch island or snowflake is also shown.

Somewhat less attractive in appearance and probably the simplest fractal
structure, our next example is the middle third Cantor set. Nevertheless, it can
be generalised to one of the theoretically most important class of fractals as we
will demonstrate in the following Subsection 2.3. The construction proceeds
as follows: from the line segment L = Fy divided into three equal parts, we
remove the middle third. This action is next performed on the remaining parts.
The result of this action of middle third removal to infinity, in the limit does,
however, leave some fractal ‘dust’, the Cantor set; see Figure 2.

The Sierpiniski triangle, yet another well-known example, has in its construc-
tion much in common with the Cantor set except that its creation happens in
two dimensions resulting in a generic 2D fractal. It can be obtained by repeat-
edly removing triangles from the initial filled triangle, as is demonstrated in
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FIGURE 2. Starting from the line segment Fy, five generation steps of the
Cantor set follow, up to Fg.

Figure 3. The same Sierpinski triangle will be obtained if the initial object is a
square which is next divided into four equal squares of which one (e.g. bottom
right) is removed, see Figure 4. This is not a rare duality of Sierpiniski con-
struction, but a universal property behind the fractal (attractor) construction.
It is the transformations of similarity, expressed in the idea of the generator
and containing the scaling and translating transformations which fully define
the resulting object.

Indeed, recursively repeating the similarity transformations to infinity re-
sults in the fractal object, provided the transformations contract space (notice
that the rescaling factor is always less than one). The shape of the initial object
used to ‘feed’ the generator is not so important;? all initially distant points will
be ‘squeezed’ by the contracting similitudes into the limit fractal shape, which
for this reason is also called the fractal attractor.

The construction process for each of the examples introduced can, therefore,
be fully described by a set of rules involving the transformations of similarity.
In the Cantor set case, these will be only two transformations (similitudes)
acting on the line:

1. S;. - scale by 1/3 and place at 2’ = 0 z;
2. Sy, - scale the 1/3 and place at =’ = 2/3 z.

2 it has to be a compact set
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FIGURE 3. The Sierpinski triangle: From a filled triangle Fy, an inverted
triangle is removed in the first generation step to give F;. The three remaining,
still filled triangles are next subject to the same transformation of inverted
triangle removal to give F5. The followings generations are shown, Fy through
F; and twice enlarged F5.

For the Sierpinski triangle, the transformations will be three affine trans-
formations in the plane {X,Y} :

1. Si5 - scale by 1/2 (along = and y) and translate by 2’ =0z, y' = 0 y;
2. S5 — scale by 1/2 and translate by 2’ = 1/2z, y' =0 y;
3. S3s - scale by 1/2 and translate by 2’ =0z, y' =1/2y.

And for our first fractal example, the von Koch curve, we need four transfor-
mations:

1. 51 - scale by 1/3 (along z and y) and translate by o’ =0z, y' = 0 y;

2. Sy, - scale by 1/3, rotate by 7/6 and translate by =’ = 1/3 z, y' =0 y;
3. S3, - scale by 1/3, rotate by 7/6 and transl. by 2’ = 1/2 z,y' = 1/(3)/2y;
4. Sy — scale by 1/3 and translate by ' = 2/3z,y' =04y.
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FIGURE 4. The Sierpinski triangle: starting from a perimeter of a square Fy,
the two first generation steps Fy and Fb are shown, followed by Fy and twice
enlarged F7.

2.2. Self-similarity and self-affinity

As is to be expected, the above rules defining the well-known examples in-
troduced can be represented in a somewhat more appropriate flexible general
formalism. It represents the set of construction actions as parameterizable
similitudes which can be used to generate a variety of fractals. The central
formal concept here is that of the affine transformation or an affinity. which
we will call a mapping S : R" — R" of the form:

S(z) = T(z) + b,

where T is a non-singular linear transformation on R" (often represented by
an n x n matrix) and b is a vector in R".

Generally, an affinity is a shearing transformation; its contracting or ex-
panding effect do not need to be the same in all directions. For our con-
siderations we will allow only such transformations S which have the con-
tracting property, which is saitisfied if there is a number ¢ with 0 < ¢ < 1,
such that |S(z) — S(y)| < clr — y| for all x,y in R*. Such a transformation
S :R* — R" is then called a contraction and it still has the freedom to contract
with differing ratios in different directions. As a special case constituting an
important class, we have (contracting) similarities contracting isotropically: if
|S(x) — S(y)| = c|zr — y| for all x,y in R" then § is a similarity.
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All the examples shown so far used similarity transformations. Let us
demonstrate how the presented examples fit in this formalism. The Cantor
set construction can be simply described by two one-dimensional transforma-
tions:

T = 8 (z) = (1/3)(z) + (1/3)(0) ;
5 (z) = (1/3)(z) + (1/3)(2) - 1)

The matrix notation of the transformation leading to the Sierpirski triangle is
similarly defined with respect to (z,y) coordinates:

a(y) = () (3)+(8);
2(5) - () (0)-(%):
=(3) = (e) (0)+ () @

The von Koch curve is best represented by a set of four transformations in the
plane,® for which the matrix notation is:

()= (54) (5)+(8):
2(3) = (Mwson ) (55) (5)+(0)
2(3) = (W) (832) (5)+ (L)

()= (Re) (5)+(%F) ®

Our first fractal example again requires not only the highest number of simil-
itudes, their form is also slightly more complicated since it includes rotations.
We indicated this by writing separately the rotation and dilation transforma-
tion.

Suppose we apply the transformations Equation (1) to generate the Cantor
set. After the first generation we have {S;(Fp), S2(Fo)}. The second action
leads to {51051, $1082, 52051, 52052}, where we neglected indicating the initial
object Fg, and denoted the transformation of composition of transformations
S; with o. The effective contraction rate of each of these four combinations
of transformations in the second stage of generation is, of course, 1/3 1/3 =
1/9. Moreover, each combination defines uniquely the resulting ‘object’ - S; o
S;(F), 0.5 € {12},

x's2

Il

Il

3 Since it is generically a curve, the von Koch construction can be also parameterized to give
one-dimensional function.
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This means each object is also designated an unique combination of indexes
{(1,1),(1,2),(2,1),(2,2)}. Had we used numbering starting from zero for in-
dexing the similitudes, we would have recovered a unique binary address of each
element of the Cantor set, respectively 00, 01,10, 11. The third generation adds
the rightmost (least meaningful) bit, and so on. .. Similar consideration for the
Sierpinski triangle would lead to unique triadic addresses, and for the von Koch
curve, quadric. These sequences of transformations will also be referred to as
the kneading sequences the terminology which stems from the theory of chaotic
dynamical systems.

Repetitively applying the set of contraction transformations S,,n=1... N
to infinity does not, perhaps surprisingly, lead to the vanishing of the fractal
shape. We have already shown some examples of the limit shapes of example
constructions, the so-called (fractal) attractors. Indeed, each element of the
attractor can still be identified by its, now infinitely long, address.

For the rigorous proof of this conjecture see, for example [10]. By this
standard result, if S;, ..., Sy are affine contractions on R", the unique compact
set F' invariant with respect to S, is guaranteed to exist and is termed a self-
affine set or an attractor of S,,n=1,... . N.

Therefore, the following invarience relation is satisfied:

N
F =] Sa(F) (4)
n=1
for the self-affine set F’ obtained by
N ok
Fi= (| S:|(B) foranyBCR';  F=limgoFi . ()

n=1

where o denotes the composition of contractions, so that
(ProPyo...o P)(x) = Py(Pa(...(Ps(x))...).

If F is a fractal, the subsequent approximations Fy of the set F will be called
pre-fractals.

In the following we will restrict ourselves to non-overlapping transforma-
tions that is such that the union in (4) is disjoint or they do not overlap
‘too much’. For this we will require the components S; to satisfy an open set
condition; i.e. there must exist a non-empty bounded open set 1" such that
Vo ngl Sn(V) with the union disjoint.

Naturally, in the case where the set satisfies the invariance relation (4), in
which all the transformations S, are similarities, the set F is called self-similar.
Whether self-similar or self-affine, the fractals defined so far can generally be
described as sets. The applicability of the concept of set is, however, somehow
restricted in the natural sciences. Observables from the real world are often
more appropriately represented as (fractal) functions or measures like prob-
ability distributions, all possessing an intrinsic independently scaling density
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component. Such measures and functions, which also need to account for dis-
tributions (and this generalisation we will take by default), will often - but not
necessarily be defined on fractal support.

2.3. Fractal functions (IFP formulation)

Generally speaking there is no restrictions on the class of functions which graphs
can posess fractal properties. Both continuous mappings and tempered distri-
butions include fractal examples. Time series, from medicine, technology or
economics, density distributions in geology, astronomy or physics provide an
unlimited source of potentially fractal functions. We have already seen how
the affine transformation can be used to construct sets, let us in the following
demonstrate how the concept of the fractal function or measure distribution is
intimately related to the affine transformation and self-affinity. We will con-
sider the continuous contraction transformations S; : RZ = R?, i =1,...,N,
in short to be called maps, like those defined in the previous subsection.

The crucial extension to the formalism of fractal sets was the introduction
of the measure’s (mass) density component, the scaling of which is independent
of the scaling of its support. In particular, this generalisation over measures
following multiplicative scaling rules, gave rise to the extension of the fractal
formalism of sets over the multi-fractal formalism.

The first construction to be introduced, the so-called Besicovitch measure,
has become practically a standard illustration of the concept in works treating
the multi-fractal formalism. Not without importance here is the fact that it
remains one of the few analytically tractable examples of multi-fractals. Nev-
ertheless, although conceptually simple, the Besicovitch measure example can
be considered fundamental to many physical phenomena.

The Besicovitch measure is actually a simple extension to the previously
introduced Cantor set through equipping it with multiplicative measure. At
each generation step the normalised measure is being consistently transferred
with some fixed repartition ratio over the elements of the set constituting the
current generation. It is easy to check that each step of generation increases
the density of the measure by the factor 3/2, while the total measure remains
constant.

Beyond this homogeneous and uniform case, there is a possibility of gener-
alising this construction through non-equal factors defining non-uniform, mul-
tiplicative repartitioning of the measure. To do this, one again takes a unit
measure and distributes it with the arbitrary ratios p; and ps over the two
remaining sections of the line at each construction step. Naturally, the ratios
ci' = ¢;' = 1/3 defining the middle-third Cantor set can as well be set to
non-uniform. Also, the number of divisions, which is equivalent to the number
of transformations, see (1), can be subject to alteration (increase).

The set of transformations describing the Besicovitch construction can be
expressed as:
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D{z)= J/ #{x) dx
0

FIGURE 5. The triadic Cantor measure, generation Fg, and the devil’s staircase
created by integrating the Cantor measure.

flei(z) = B fx)=p f(%ﬁ)i
r+ by
@) = B f@) =m i), ©

with the normalisation requirement
pmtp=1. (7)

Additionally, we put conditions ensuring non-overlapping of the transforma-
tions:
1+b; O0+bs
— .< P
¢ Ca

while all the respective values by /¢y, ba/ca, c(l. cy ! are from the interval (0, 1).

For equal ratios, py = p» = 1/2 and ¢; = ¢ = 3 with by = 0 and by =
2 we recover the middle-third, homogeneous distribution of measure on the
Cantor set (Cantor generalised function). It can be integrated to give a related
fractal object: the devil’s staircase, see Figure 5. For non-equal p; the resulting
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FI1GURE 6. The Besicovitch measure on the Cantor set, generations Fp through
F5 and the generation Fg. Distribution of weights is P, = 0.4 and P, = 0.6.
The standard middle third Cantor division is retained.

multiplicative distribution of the measure constitutes the classical example of
multi-fractal object, an example of which is given in Figure 6.

A straightforward extension to this concept of measure distribution is the
slightly more involved construction of a self-affine function. Ironically, despite
the simplicity of their construction, general self-affine functions proved to be
relatively difficult to analyse in terms of fractal geometry. Leaving the aspects
of fractal analysis to the next section, we would like to discuss a scheme of
generation of this, our last example of a deterministic fractal function. It is
a generalisation of the above introduced self-affine fractal construction involv-
ing intrinsically two-dimensional components in the affine transformation, and
resulting in a genuine fractal function.

Suppose we place on the set of similitudes the requirement that the fractal
attractor they define constitutes a functional mapping f : R — R. This is
easily achieved by imposing the following constraints on the similitudes S,,:
Let Sy, (1 < n < N) be affine transformations, represented in matrix notation
with respect to (z,y) coordinates by

w(3)= (%) (0)(727).
Next, let to = (0,01/(1 — 1)) and ty = (1,(dn + vn)/(1 — an)) be the fized

points of S; and Sy (i.e. such that S(t) = t). We assume that the matrix
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coefficients have been chosen so that
Sn(tn) = Snta(t1) 1<n<N-1,

in order to ensure that the segments [S,(to), S,(tn)] join up to form an (open)
polygon E;. The invariant set F of the S,, can be constructed, at each gener-
ation step k, by recursively replacing line segments [[S,]°* (to), [Sn]°*(tn)] by
affine images of E;.

Fix)
(Pplygon
X
Feo :\silp ’ ) Fx) . iz(P)
] N -/ A~
S1(P) 4 ~ ‘ S3P) ‘"'/ \ S3P)
/ S H S1P) .- /_ S
A\
A i e )
3 e - H e
e o S4P) Va
4 ‘\: [ RNy
° x ° x
o L]
° °
Fx) F(x)

X

FIGURE 7. The initial set of data points Fp, interpolated using the self-affine
construction. In the middle figures two cases of Fi, in the left for different values
of the vertical scaling free parameter a,, and in the right for the same o, = 0.5,
for all n = 1...4. Right below the plots of the (F7) of the corresponding
self-affine attractors.

The above scheme of generation of a self-affine attractor is often referred
to as a fractal interpolation scheme (IFS)[2]. Indeed, the initial set of points
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-1
S,(A)=A,

i=1,...,4

FIGURE 8. The self-affine attractor is invariant with respect to the operators
Sn,1...n used to construct the attractor.

t;, 1=0...N, is interpolated by the attractor F' according to the ‘construction
rule’ implicitly contained in this set.

An example of a self-affine function with four maps, to which reference is
made in the following part of this work, is shown in Figure 7 (right). The
majority of parameters implied through the data set {¢;},i = 0,..., N, the
vertical, in the y direction, scaling a,,n = 1,..., N remain free. The influence
of this scaling factor on the form of the attractor is demonstrated for two cases;
in the left branch of Figure 7, the attractor is created for several different values
of ay,, while in the right branch «, is chosen to be the same for all the affine
transformations. The infinitely developed fractal attractor is invariant with
respect to the affine transformations S,,n = 1,...,4, see Figure 8.

3. STANDARD WAYS OF CHARACTERISING FRACTALS

3.1. Fractal dimension(s) of sets

We have already pointed out that classical geometry concepts are not suited
to characterising fractal shapes: the von Koch curve is neither a line in strict
sense nor does it fill the plane, the Cantor dust an invisible part of straight line
but still it exists. ! The main tool which proved useful in characterising fractal
objects is the dimension in many forms, starting from similarity dimension
used for illustrative purposes, through the Hausdorff dimension - a strictly

! This of course applies to the infinitely developed fractals, not to pre-fractals!
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mathematically oriented tool, to the box dimension, the concept thus far most
widely used practically.

Let us use the concept of similarity as the starting point in defining a way of
characterising fractal objects and introduce the potentially fractional similarity
dimension. Many fractals exhibit some sort of similarity — they contain parts
which are similar to the complete object in some way. By similarity, we can,
for a start, mean the concept traditionally defined in geometry. Two geomet-
rical objects would be similar if, in result of uniform rescaling (and perhaps
translation), one could resolve identity between them. In this way a piece of
straight line is similar to its one-third part by the factor three, and one-fourth
part of a filled square would have to be rescaled by the factor two to revert to
the original.

It is a matter of course that the scaling (renormalising) ratios used to relate
the complete object to its parts are somehow related to the dimension of the
objects. Indeed, in the case of a line segment, it can be split in, for example,
three equal parts, each constituting 1/3 of the original. Similarly, in the case
of the rectangle, if divided in four identical rectangles, each part would be a
copy of the original by the factor 1/2. If the similarity dimension is defined as
the rate of filling the embedding space:

log(number of subparts of the object)
log(scaling factor)

Dsim(ilarity) =

we immediately recover Dy, = —log(3)/log(1/3) = 1 for the piece of line,
and Dg;m = —log(4)/log (1/2) = 2 for the square piece of plane.

The intuitive feeling of the dimension would tell us that for the examples
introduced in the previous section, the dimension of the von Koch curve should
be somewhere between Dj;ne = 1 and Dyane = 2, that is the dimensions of
line and plane respectively. For the Cantor set, it should be found somewhere
between Dpoine = 0 and Dyine = 1, which are the topological dimensions of
point and line. In order to give a quantitative measure to the intuition outlined
above, let us analyse the rate at which the example fractals fill their embedding
dimensions.

Again, this can be observed by comparing the scaling characteristic to the
self-similar components of the fractal to the corresponding scaling of the em-
bedding space. In the case of the von Koch curve, the total shape can be
divided into four similar parts. Each of these parts is, however, a 1/3 size
copy of the original shape, thus the rate of filling the embedding 2D plane can
be expressed with Dy;, = —log(4)/log(1/3) = 1.2619.... The middle third
Cantor set can be analysed in a similar way. At each construction stage, there
are two copies of the original scaled by 1/3 factor. Thus for the Cantor set
Dyim = —log(2)/log(1/3) = 0.6309.... As expected this number lies between
Dpaint =0 and Djjpe = 1.

The scope of such a characterisation is, however, limited to the class of
strictly self-similar fractal sets, (hence we denote the dimension so obtained as
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FIGURE 9. Calculating similarity dimension. Notice that due to the finite
generation depth of the original, the rescaled parts are quasi-similar.

Dim). Universally applicable concepts of dimension are the Hausdorff dimen-
sion and box counting dimension in its many variations.

Fundamental to these definitions of dimension is the idea of ‘measurement
at scale ¢’. For each particular e, we measure a set in a way that ignores
detail of size less than €, and while gradually changing €, we observe how the
measurements behave as € = 0.

Let us define the so-called e-covering of the set F, used to perform the
measurement at scale ¢, as

=1

o0
HI(F)= inf {Z |U;|* : {U;} is an € cover of F} ;

that is as the covering for which the sum of the s-th powers of the diameters of
covering balls U; is minimal (inf stands for infimum). For the collection {U;}
to be € — cover of F, it must be countable (of finite) and of diameter at most

€ and, of course, it must contain F, i.e. F C Uf:’___l Un. The limit value H*(F)
is called the s-dimensional Hausdorff measure of F:

He(F) = limeo H(F).
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Ficure 10. The Hausdorff dimension is the value of s for which the jump of
Hausdorff measure takes place.

For most values of the parameter s, the Hausdorff measure equals 0 or co.
There is, however, a critical value of s for which the jump occurs between these
two values (which can easily be verified for the case when F is a non-fractal
set). This value of the parameter s is referred to as the Hausdorff dimension.

While a perfectly good mathematical tool, this dimension is completely
unsuitable for experimental purposes. Conveniently, there exists a commonly
used alternative definition which is readily suitable for implementing on digital
computers. With its many names (e.g. Kolmogorov entropy, entropy dimen-
sion, capacity dimension [10]), it is, however, best referred to as box or box
counting dimension.

In its equivalent formulations, which differ in the way the e-cover by means
of boxes is performed, the box dimension is defined as the common value of
the lower and upper bounds on the box counting dimension in the case that
these are equal (FALCONER [10]). 2 Denoting supremum value with overline
and infimum with underline, the lower and upper box-counting dimensions of
a subset F' of R* can be given by

log N(F)
—loge

DpF = T, 28N(F)

DpF = lim_,
—loge
and the box counting dimension of F' by

log N.(F)

DBF = limc__,o
—loge

2 In practical cases, we will rather be finding ways to identify an average value within the
bounds, than determining the bounds, see e.g. [4].
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(if this limit exists), where N(F) is any of the following:
1. the smallest number of closed balls of radius € that cover F;

. the smallest number of cubes of side € that cover F;

2

3. the number of e-mesh cubes that intersect F;

4. the smallest number of sets of diameter at most € that cover F;
5

. the largest number of disjoint balls of radius e with centres in F.

This list is not exhaustive but covers the most frequently found applications of
box counting.

3.2. Extending the dimensional formalism to multiplicative fractal measures
A variety of other definitions of dimensions can be introduced, still, in general,
they all boil down to the concept of counting the e-covering of the fractal set.
In such a case it makes no difference whether the items (of the fractal set)
contained in the particular e-coverings belong to one class or differ drastically
in some properties. One could give the example of the distribution of bank
notes or coins within a certain region or country. Just counting the single
occurrences yes or no of these items in an e-covering does not seems adequate
even to a layman. Indeed, tracing the value contained in a certain e-covering
would ring a bell with many.

Back to our original purpose of characterising fractals, a multiplicative mea-
sure like that on the Cantor set, scales differently from point to point. Recall,
for the example of the Besicovitch measure, that for each point of the attractor
an ‘address’ is known which corresponds with the unique sequence of trans-
formations S;, thus with the product of ratios p;/s;, see (6) representing the
density increase at each step of refinement. The product being a permutation
(Abelian) group, the effective density is not unique for each point - there will
be sets of points for which the scaling of density is the same. It is, therefore,
straightforward to characterise the object through sets of points that follow the
same scaling.

The most sound and comprehensive formalism developed for characterisa-
tion of multiplicative measures to date is the thermodymamical formalism by
Arneodo et al. [6] In the micro-canonical formulation [6] which we outline first,
the local scaling component is derived per point from scaling of the measure
in the € box. The box B, (¢) is centered at the point x and the exponent a(z)
indicates the rate of scaling at this point

11(Ba (€)) ~ €2 (8)

This exponent is sometimes referred to as singularity strength (and is loosely
related to the Holder exponent in the case of functions). Now, the f(«) singu-
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larity spectrum describes the distribution of the singularities of the measure in
the following sense: 3

Ny(e) ~ e—fle) 9)

Thus the f(o) describes the (logarithmic) evolution of the histogram of
Nq(e) when € — 0, and can be identified with the fractal (Hausdorff) dimen-
sion f(a) = Dp(Sa) of a set of points supporting scaling equal S, = {z €
support p,a(z) = a}.

Conceptually straightforward, this (micro-canonical) characterisation is
highly unstable in practice due to the naive expectation of uniform scaling of
the local exponent a(zo). In fact, scaling of the measure contained in the box
B, (¢) follows the complicated pattern of the corresponding kneading sequence
- the difficulty which can only be surpassed using the canonical formalism. It

employs the transformation of the global quantity - the partition function Z
defined as

N(e)
2(g &)=Y plle) ~@, (10)
=0

where p;(€) is the measure contained in the i-th box of the e-coverage. Scaling
of this partition function Z(q,€) ~ € (9 gives the mass exponents

Z
T(Q) P ].lm ].Og (Q) E)

e—=0  loge (11)

which can be related to the spectrum of singularities through the so-called
Legendre transformation (see e.g. [11]):

D) __ o5 (g, (12)

dg
(fla)=qg <a>(g) —7(q) - (13)

The derivation of the above relations proceeds as follows; let us introduce
the Boltzmann weights arising from the partition function Z(g,€), (10) as:

0]

i(q,€) = =+F— . 14
i(g, €) Zjﬂg(ﬁ) (14)

The expectation for a, see Eq.(8), over the canonical ensemble is then:

<a>(g) = Zaim(q,e) = Z l—(%%ie(—fl pi(g,e€)

3 Note that we use the same symbol f() for the singularity spectrum as in other context for
an arbitrary function. This notation is standard in literature and should always be clear
from the context.
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which can next be directly related to the scaling exponents 7(g) of the pa%‘tition
function (11) (in the thermodynamic limit of infinite volume € — oo which we
assume below):

dr(g) _ .. d(log(Z(g;¢))/log(e)) _ 1 1 d
Tdg =}1—I>r(1) dq " loge Z dq Zlg€)

since, from the definition of the partition function Z(g, e) >, uY, it equals:

dr(g) _ 1 logpi(€) )9 =< o>
dg logezzl()glf'z 6)[1,,(6 ZZ loge z ) (Q)

If now f(q) is defined as:

£0) = X lg, ) AL, (15)

i

using (14), one obtains

fl@=gq Z 8 46) |\ (g,e) - Zui(q, o) g2

loge loge

which, from (8) and (11) together with the normalisation requirement on the
measure y gives

(F@)e@) =g <a>(9) -7(9) . (16)

The parameter ¢ works as the mechanism to select the singularities of certain
strength. For ¢ > 0, the partition function is dominated by singularities scaling
with a > 1. Choosing ¢ < 0 increases the role of the singularities of a < 1.

Note that for ¢ = 0 we recover the original box counting dimension of the
set support of the measure. Moreover, it is easy to show that for homogeneous
fractals, e.g. self-similar sets with uniformly distributed measure, the 7(q) is
a linear function. The Legendre transformation brings the spectrum of singu-
larities of such measure to one point — exactly the Hausdorff dimension of the
support of the measure. It is the non-linearity of 7(¢) which for the generic
case contains non-redundant information about the measure distribution and
its spectrum of singularities. In the figure below we can see the example 7(q)
and the related f(a) spectrum of singularities for the Besicovitch measure with
repartition ratio p = .3,¢ = .7, on the triadic Cantor set support.

4. BEYOND THE DIMENSIONAL FORMALISM OF FRACTALS

The multi-fractal analysis of multiplicative measures is a definitive step forward
in describing fractals arising in many dynamical phenomena in nature. This
is, however, still a global characterisation through the fractal dimension of
subsets of the measure’s support. The information it carries has only statistical
meaning and gives only a global sense of the measure’s scaling properties. Even
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FIGURE 11. 7(g) for the Besicovitch measure p = .3,¢ = .7.
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FIGURE 12. f(a) for the Besicovitch measure p = .3, = .7.

though it generalises the approach to non-homogeneous measures, it is still
unsuitable (in its traditional box counting formulation) for analysing arbitrary
fractal functions [6].

There is, however, a way of characterising fractals through their primary
property, their intrinsic renormalisation, which is reflected in self-similarity or
self-affinity. The basic transformations of renormalisation characterising the
fractal object are those which are used to create it. In this sense, we can
speak of the “construction rule’ associated with the fractal object. Obviously,
recovery of such a unique construction rule would provide the most complete
characterisation of the fractal. What is perhaps even more striking is the
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fact that the ‘rule’ (subject to an iterative process) could give insight into the
dynamics of the process of creation of the fractal object! This is a rather far
going expectation, but the primary results obtained are rather promising.

The problem of recovering the invariant renormalisation transformations
is generally known as the inverse fractal problem. It was first defined in the
context of image compression by BARNSLEY [2], and in its original formulation
was only intended to provide a rough approximation tool with a controllable
error. This could be achieved through the so-called collage theorem [2]. Various
approaches were developed, mostly oriented at the decomposition of the entire
rectangular image through Manhattan (or affine) sub-divisions, while other
methods often claiming to solve the Inverse Fractal Problem (IFP) uniquely,
aim at finding optimal transformations for isolated objects. In both classes
of methods there is no intention for the transformations to bear any physical
meaning whatsoever. Nor do, to the best of our knowledge, any of the ap-
proaches use methods allowing unrestricted recovery of transformations. The
restrictions include ad hoc limits on the number of transformations, but also
extend over some intrinsic limitations which are inherent to fractal functions,
like the inability to single out the scaling behaviour masked by polynomial
behaviour.

In our opinion, the problems traditionally encountered in the IFP can suc-
cessfully be dealt with within the wavelet transformation based approach. Not
only does it provide the means to generalise over arbitrary fractal functions and
arbitrary type of singularities as recently demonstrated in [7] in the context of
multi-fractal formalism but, it also constitutes a representation particularly
convenient for localised assessment of renormalisation properties of fractals.

4.1. Wavelet transform in singularity analysis
Of many transforms which can be used to decompose a function, there is one
particularly suited to provide localised position-frequency decomposition.

It is the recently introduced wavelet transform, see e.g. [12], which differs
from other localised transforms like the Gabor transform in the ability to zoom
in on very short-lived high frequency phenomena, be it transients in signals or
singularities in (fractal) functions.

This ability is achieved in a very simple way through introducing the scale
parameter s which ‘adapts’ the width of the wavelet kernel to the microscopic
resolution required, thus changing its frequency contents. This action can be
performed locally on the investigated function and the location of the analysing
wavelet is determined by the other parameter b

Uls, () = p(2=2

)5 (17)

where s,b € R and s > 0 for the continuous version (CWT).

The transform is defined as the inner product of the function f(x) and the
thus dilated and translated wavelet U(s, b)i(z):
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WHeD = [do 5@ Uis b v (18)

The power given to the normalising factor s, it is often chosen to serve a
particular purpose. In this work, in the one dimensional case we choose a
default factor s™*, which conserves the integral [ dz [¢)(x)| and thus leaves the
L' measure invariant. * This also seems to be the choice generally favoured in
most applications of wavelets in fractals to date.

The natural requirement for the wavelet transform would be that of re-
versibility, that is to say the original function f could be reconstructed from
its wavelet transform W f. This is indeed satisfied as a consequence of the
fact that the wavelet transform is an isometric transformation, which can be
expressed in the so-called resolution of identity for the inner product of the
function f and g and their wavelet transforms W f and Wg: °

® [ dsdb
W5 W58 =Cy < 9> . (19)
—00 J —00
The analysis of the local singular properties of a function with the wavelet
transform can be illustrated by the following. The singularity strength is
often characterised by the so-called Lipschitz-Holder exponent. If there ex-
ists a polynomial P, (z) of the degree n such that

|f(2) = Pal(2 — z0)| < Clz — 20",

the function f(z) is said be Lipschitz h in zg, or to have the Hélder exponent
h in the point xg, for n < h < n + 1. Suppose, the polynomial P, corresponds
to the Taylor series expansion of f around zy up to the order n.

It follows directly that if f is equal to a positive integer n + 1 it is n times
continuosly differentiable in zo. Alternatively, if n < h < n + 1 the function
f is continuous and singular in zo. In that case f is n times differentiable,
but its nt* derivative is singular in ¢ and the exponent h characterises this
singularity. The exponent h, therefore, gives the indication of how regular the
function f is in zg, that is the higher the h, the more regular the function f.
The wavelet transform of the function f in z = zo with the wavelet of at least n
vanishing moments, i.e. orthogonal to polynomials up to (maximum possible)
degree n:

. +0oo
/ z"Y(r)dr =0 Vn,0<n<m,

-0

4 Of course, in the particular case of fractional support of the measure, the invariant measure
should be rescaled as s~ 2, where D is the fractal dimension of the support. However,
since this is usually a priori unknown, we will use the default value equal to the embedding
dimension of the support, allowing for later possible readjustment.

5 It can be shown that (19) leads to the so-called admissibility condition on the wavelet

fm dz(z) = 0, which excludes low-pass filters (e.g. the Gaussian). However, since we
I . .
are only focusing on the renormalisation properties of the object’s CWT, we will disregard

this restriction.
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reduces to
W f(s,20) ~ C /1p(.7:)|5 z|M=0) dz ~ C |s|H(x0) /¢(w')|x’|h(z°) dz' .

Therefore, we have the following proportionality of the wavelet transform of
the singularity n < h < n+ 1, with the wavelet with n vanishing moments,
adequately refered to as an oscillatory boz:

W™ £(s, 1) ~ |s]2(=0)

The consequences of the ability of accessing the singular scaling behaviour
with the wavelet transform and in particular with the modulus maxima rep-
resentation [13] of the CWT are in fact two-fold. One is the possibility of
extending (and correcting) the traditional statistical formalism of fractals [6].
The second, which we would like to pursue further here, is the possibility of
recovering the actual renormalisation (scaling) parameters involved in the cre-
ation of the fractal attractor through the original construction rule.

4.2. Renormalisation recovery from the CWT

Let us first investigate the action of the two element group of our most simple
fractal example - the uniform measure on a triadic Cantor set.

s*(1-1og(2)/log(3))W(Cantor_gen6)

FIGURE 13. The top view on the wavelet transform of the uniform mea-
sure on a triadic Cantor set. Note the correction factor equal s!—P , where

D =log(2)/log(3) is the fractal dimension of the uniform measure on a triadic
Cantor set.
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For the uniform measure on a triadic Cantor set we have the transformation
T1(1/3,0) and T>(1/3,2/3 I), where [ is the length of the initiator L = Fp, and
T(a,b)(z) = ax+b = U~(q,b). The function reflecting homogeneous measure
distribution on a triadic Cantor set fc is thus invariant with respect to these
two transformations, see theorem 1 in chapter 2:

fo=Tfc (20)

1,2

The wavelet transform of the uniform measure on a triadic Cantor set fo is
thus for T5:

Wi)sb) = [ 57Nz £(z) Us, b) ¥(z)

- / s71dz T5(1/3,2/31)f(z) U(s,b) ¥(z)

— /s‘ldm F/35+2/30) (= .
On taking =’ = 1/3 z + 2/3 [ we obtain
WHesn = [systa ) wED)
= /5_11/3_1dm' f(z") ¢(x’ ~ 2/13;; 1/3 b)

= (WF)(1/352/31+1/3b).

We see that the invariance in the fractal attractor reflects in the invariance of
the wavelet transform with respect to the operator T>. Analogically, for the
operator T; we obtain (W f)(s,b) = (W f)(1/3 s,1/3 b). While this fact can be
verified in the figure showing CWT of the investigated attractor, it is much more
convenient to observe it in the so-called wavelet transform modulus mazima
(WTMM) representation — as pointed out by MALLAT [13], a representation
reduced to the local (modulus) maxima in x of the wavelet transformation
(W £)(s,z) of a function f(z) can be considered to be complete for a large
class of functions.

In the figure showing the WTMM of uniform measure on a triadic Can-
tor set, Figure 14, the invariance with respect to the operators Ty and T5 is
immediately apparent and is emphasised with the help of windows.

While perhaps not most spectacular for the uniform measure on the Can-
tor set exactly the same reasoning can also be applied to more complicated
measures and in general to arbitrary functions. Let us now take the example
of the Besicovitch measure. The continuous wavelet transform (CWT) of the
example mass repartitioning using 0.3/0.7 ratio, on the support of the uniform
triadic Cantor set, is shown in Figure 15 below.
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FIGURE 14. The top view of the maxima representation of the wavelet trans-
form of the uniform measure on a triadic Cantor set. The two renormalisation
transformations are shown and the corresponding renormalised windows can
be compared by overlaying.

Recall that (6) describes the transformation used to create this invariant
self-affine object. At the same time, they constitute the invariance transforma-
tions corresponding with the object. If we now identify two operators acting
on scale and position as T(c;*,b1/c1) and T((c5 ", b2/c2)), we directly have

(W) (s,z) = (W)[p1,2T1 2(u,v) fl(s,2) = pra(WF)(s',2"), (21)

for the scale-position coordinates of the related bifurcations:
(5,2) = [T1,2(uw,)](s',2") = (u1,28", ur 22" +v12) (22)

Thus the pair of vectors (53',ZZ’) constitutes the two components (position,
scale) of the invariance vector in the scale-position domain. An illustration of
this is given in Figure 16. The top window and its two images renormalised
back for comparison are shown overlayed on top of one another. The task of
tracing the invariance in question is now easier since the scaling component 53
becomes a vector in the scale-position plane just like the translation component
zz'. If we follow the resultant vector (after renormalisation, up to finite size
distortions) we find the same pattern again.

However, the invariance in the scale position plane only defines the two
components of the invariance vector. The renormalisation transformations for
the investigated measure take their complete form only if we include the infor-
mation (regarding the repartitioning of measure) contained in the values of the

wavelet transform in the corresponding renormalising bifurcations, as evident
from (21):
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s™(-1)w(Besicovitch(pl=.3,p2=.7))

FIGURE 15. The wavelet representation of the Besicovitch measure with mass
repartition 0.3/0.7, on the support of the uniform triadic Cantor set. The
wavelet used is the Gaussian.

(W£)(s,2)
(Wf)(si,za w'l,z)

It is, therefore, possible to reveal all the original renormalisation parame-
ters (constituting the originally addressed ‘construction rule’) from the wavelet
transform bifurcation representation of the investigated fractal.

Recovering the invariance in question and determining the degree of its uni-
formity is the main challenge in solving the Inverse Fractal Problem. The actual
key to the solution of the inverse fractal problem using the CWT is utilising the
invariant ‘landmarks’ in the wavelet landscape - the bifurcations [3, 8]. The
coordinates of these objects are subject to the transformations to be identified;
therefore, finding sets of bifurcations following the same transformation gives
access to the transformation itself. Let us therefore state the following: If an
object is invariant with respect to some construction rule S, it is self-affine
(self-similar) and is a fractal. The Inverse Fractal Problem aims at re-
covering the unknown construction rule in order to prove that the object F' is
self-affine (self-similar).

This is in general a rather difficult task, but we will demonstrate that it is
a feasible one — the possibility to do this is contained in the invariant represen-
tation such as the bifurcation representation. The rationale behind focusing
on the bifurcation points is similar to that for the modulus maxima - the par-
ticularly convenient feature of this representation is its translation invariance,

=pP1,2 - (23)
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FIGURE 16. The wavelet bifurcation and maxima representation of the Besicov-
itch measure with mass repartition 0.3/0.7, on support of the uniform triadic
Cantor set.

which is of great importance in pattern recognition problems. Since fractal
functions are a special class of functions where the translation invariance is
accompanied by scale invariance, representation invariant with respect to both
scale and position shift is required. In searching for a representation featuring
such unique ‘landmarks’, we found very suitable the bifurcations of the maxima
lines, defined to be the points in the scale-space domain where a new maxima
line begins while going towards smaller scales. These points can be identified
as general mazima of the wavelet transform i.e. as points where |W f(s, )| is
locally maximum in a two dimensional neighbourhood of (sg,xp) in the scale-
position plane.

The necessary condition for the general maximum is the zero of the deriva-
tives along both the position = and the scale s directions.

d(Wg)gs,;z) = 0
wwiea) _ g (24)

In Figure 17, we indicate the action of the transformation S; on two bi-
furcations B; and B,. Although arbitrary in principle, we prefer to choose
bifurcations most upward in scale/hierarchy; the explanation of the reasons for
this will be given in the next chapter. The action of both the transformations
results in the bifurcations B = S)(B;) and B} = S;(B;) respectively. Next,
By’ and By are indicated as the results of respectively, S, (B}) and S;(B}), and
so on.... In the right figure we find a similar analysis in the case of Ss.

This means, that for each pair of bifurcations there is a sequence of trans-
formations S; relating them, and vice versa, there are subsets of bifurcations,
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FIGURE 17. The action of the transformation S; on two arbitrary bifurcations
B; and B, results in the bifurcations B{ = S;(B;) and B = 51(B>) respec-
tively. Next, By’ and Bj are indicated as the results of respectively, S;(Bj)
and S;(Bj), and so on.... In the right figure, similar analysis for the case of
Ss.

for which the transformation is either S; or S3 - a few of which are shown in
the figure above 17.

If we were to check for all the possible pairs of bifurcations to which trans-
formation their coordinates are subjected, we would discover that the most
common transformations are in fact the pair S; and Sp. Of course, there
would be many combinations of the transformations occurring quite often, but
always less frequently than the two primary ones. Moreover, once all the pairs
of bifurcations subject to the ‘strongest’ pair of transformations are removed
from the representation, there would be almost no bifurcations left (except for
those not matched due to errors).

This is a very intuitive description of the procedure we have developed
to identify invariance in the bifurcation representation and it indicates the
following facts: ©

1. We seek for the most consistent transformations, that is such which trans-
form the largest sets of bifurcations; later we will introduce measures for
estimating this purpose;

2. since any combination of the invariance transformations is again an in-
variance transformation, our purpose is finding the irreducible elements of
the group of transformations, therefore each pair of successfully matched
bifurcations can in principle define only one invariance transformation.

6 For the more complete description of the numerical algorithm, we refer the reader to the
next subsection, as well as to (8, 4].
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The sets of bifurcations thus isolated, related through either of the trans-
formation S; and S, can be now used to reflect the original global invariance
transformation in (probabilistic) distributions of parameters of the invariance
model Figure 18. The modes of these parameter distributions evaluated for the
investigated example show remarkable agreement with the original values.

The information contained in the modes of the parameter distributions is
complemented by the particularly interesting information obtained by relat-
ing the coordinates of the matched bifurcations. The coordinates transform
according to T} » as indicated in (22), therefore if we set off the position coor-
dinate of the bifurcation upper in scale with the matching bifurcation lower in
scale for all matched bifurcations, see Figure 18, we obtain the dynamic maps
directly! The maps encompass the generation rule which governs the creation
of the object in a dynamical process z(t) — z'(t + At), where t denotes time
evolution.

1 T T
, ‘ratesu.da;m‘ .
f 37(x-2./3.) weeeerf
/ ;
0.8 r / 3 b
06 | / ]
‘ / i 03— 213 — (1/3) ~
/ :.' modo*b! — mode{ b2 ~— mode_g1&s2 —
04 / i
/ /
o2 /
# i
° Fd
o 0.2 (X3 08 o8 1 “3-2-10 12356789143 91 -9 0123466656789

FI1GURE 18. The z coordinates of matched bifurcations transformed according
to the linear mappings T; and 7> (left). The modes of the parameters of the
invariance transformations S; and S,. From left to right by ~ 0/3, by ~ 2/3,
51,2 = log(1/3), p1 = 0.3, p2 = 0.7. (right)

Note, that the distribution of the points on the maps reflects the structure of
the support of the attractor — the uniform triadic Cantor set!

Let us now move to the general self-affine function as shown in Figure 7.
Such a function cannot be expressed as a simple multiplicative map, due to
the fact that it contains a (piecewise linear) polynomial which constitutes the
‘background’ of the multiplicatively scaling function. In general, the back-
ground polynomials may or may not themselves be introduced by the iterative
affine mapping. As such, they may well consist of relevant information, but
also may well simply be completely irrelevant to renormalisation properties,
and therefore can often rightly be referred to as noise. However, they will al-
ways be masking the multiplicative renormalising of the object, and removing
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arbitrary noise of this kind is often crucial for the recovery of the renormalisa-
tion properties of the object.

The self-affine function can generally be described by a set of a finite number
n of self-affine transformations of the generic form

fo'(z) = Sn(fn(2)) = an fn((z = Bn)/00) + yn (& = Bn) +8n, n € N . (25)

Therefore taking the wavelet with two vanishing moments we will be able to
capture the invariance of the operators acting on scale and position:

(D% 1)(2) = a (DO )2 2) 5,2 (26)

n

log(scale)

., maxima
bifurcations o
4

FIGURE 19. Windows on the wavelet maxima representation of the self-affine
function (left). Comparison of the windows by means of renormalising and
overlaying (right).

See Figure 19 for the indication of the invariance present in the example dis-
cussed. The remaining information can be assessed by decomposing the self-
affine function into the wavelets with an increasing number of vanishing mo-
ments 1(®), (1) () It allows us to solve the set of equations:

o)y = onf(522) +m (2= Ba) +0n
(DY) z) = an(DV(EE) o™ + (27)

(D)) = an(DP () 0,2
by means of comparing corresponding f and f' values (and their D and D®

derivatives) on the invariant structure of bifurcations recovered from wavelet
transform performing the second derivative of the investigated function W@ f:
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FIGURE 20. A stack of wavelet transforms W®) f, W) f and W(® f, sampled
with the affine grid of bifurcations.

A .

{ LD T amd (WO = 28 W f)(s,0) , neN.(28)
s = ops On

Using estimated parameters o,, 3, ,, we can, in sequel, solve the set of equa-
tions (27) by sampling the corresponding wavelet decompositions on the recov-
ered invariant grid; see Figure 20 for an intuitive illustration of this idea.

For all the parameters, expectations were obtained by estimating the mode
of parameter distribution and have shown good agreement with the values
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FIGURE 21. The original attractor, the attractor reconstructed using the set
of revealed self-affine transformations and the difference in y between the two
attractors. (The error on the orthogonal z coordinate not shown in the figure
is of the same order.)

used to construct the self-affine example. We refrained from displaying all the
individual (twenty) modes. Instead, we show the result of the reconstruction
of the self-affine attractor with the estimated maps, Figure 21.

4.3. A General tree mapping algorithm

The essence of this method lies in finding best matches in the hierarchy of bi-
furcations derived from the structure of the wavelet maxima representation. In
order to construct such a hierarchy, each maximum line of the wavelet maxima
representation will be associated with a branch. We say that the bifurcation
b(s,z) belongs to the branch h; (or is visible) if, at the scale s there is no other
branch h; between h; and b(s, z):

b(s,xz) belongsto h; < (line segm[b(s,z),h)Nh; =0 ,Vj#1) . (29)

One bifurcation will, therefore, belong to the two closest maxima lines h;, and
h,, on both sides of the bifurcation. (The boundary cases will be treated in a
wrap-around fashion.) We will associate probability measures with this relation
of bifurcations to branches as follows: the probability that the bifurcation
b(s, ) belongs to the branch A, is:
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FiGurE 22. Construction of a tree in the left figure, and the same tree now
as a sub-tree (one of the main four) within the complete representation on the
right. We used the example self-affine function from Figure 21. Maxima lines
are left visible in order to facilitate perception of the trees. Only the more
probable relationships are shown.

distance(b, hq)

P(b(s, ) belongs to hy) = distance(b, hp) + distance(b, hy)

(30)

where distance(a,b) = |zs(a) — z5(b)| i.e. it equals the Euclidean distance
between the z coordinates of the maxima lines at a certain scale s. Obviously,
P(b(s,z) belongsto hy) = 1—P(b(s,z) belongsto hp), and by this definition
the probability P is drawn from a uniform distribution.

Since a new branch originates from each bifurcation, we will define a tree as
a couple consisting of a branch h and all trees originating from the bifurcations
b; belonging to the branch h

tree(h) = (h, {tree(h;)} : (i b # O A (b belongs to h))) . (31)

In Figure 22, we illustrate the first few steps of the process of tree creation.
It is apparent that since a new tree is defined for each maximum line, one
bifurcation can belong to many trees.

This completes the creation of the probability relationships in the bifurca-
tion representation. For N, bifurcations, we have 2/Vtet—1 arrangements which
form a valid tree. The task of the algorithm is to explore the search space in
order to find the most likely arrangement, while avoiding a combinatorial ex-
plosion of the computation.

The topology of the arrangement found determines which sub-trees are
present in the tree, therefore determining the maps which characterise the
system. Referring to a generic tree, see Figure 23, we will be able to distinguish
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F1GURE 23. The branching of a generic tree. See text for description.

left and right branches and the root. The most obvious first match would be
between the first side branch, that is the highest in the hierarchy, and the
complete tree. In the same way, the next match would be with the side branch
on the opposite side, assuming there is one there. The third step is perhaps
less obvious; after pruning the first two side branches we can try matching
the remaining radical shift sub-tree against the original top-tree. 7 In all these
steps, each bifurcation can be used only once, thus its assignment becomes
restricted to one sub-tree only, and therefore it takes part in defining only one
map.

Naturally, in most cases there will be bifurcations which do not match. The
existence of trees stemming from these bifurcations indicates that potentially
there are more than three maps in the system. Therefore, any sub-tree pruned
in these three generic matches is next used for subsequent matching against
the complete top-tree as before. A description of the tree/sub-tree matching
algorithm used in the above procedure will follow.

This hierarchical approach constitutes the first heuristic used to limit the
search space. The motivation for this is that the higher the sub-tree is in the
hierarchy, the more likely it is to acquire a large likelihood measure, due to the
larger scale extent it can cover. Therefore, it can potentially contribute largely
to the maximisation of the total likelihood measure.

The likelihood measure being maximised is:

s ()" (1 P )™ i)

M = —,
easure Norm(a.b)

(32)

7 In practice it is this radical shift that is tried first, all pruned branches constituting the
sub-trees.
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where f(&.,) is a penalty factor

fom) = etV 2ut,

The factor n,,/Niot determines the fraction of the bifurcations used while
[P Plow P9 is the total likelihood of matched bifurcations. M is the num-
ber of maps extracted and Norm(a,b) is intended to normalise the measure
with respect to parameters a and b. Since we obtained a reliable performance
for constant, minimal assumption based values of a = 2 and b = 1, the opti-
misation with respect to these parameters proved unnecessary and the norm
Norm(a,b) could also be neglected.

The argument for such a construction of the measure is as follows: the ‘aver-
age’ likelihood is computed over all n,, matched branches (i,j) as
([T}, Plow pM$™)l/nm_ This measure ingredient alone will, however, tend
to favour a minimal number of bifurcations per map n,,. In order to compen-
sate for this, we introduced the (n,,/ Ntot)a/ 2 factor. The measure constructed
in this way can already be used quite reliably.

To improve the ability to avoid gross errors in the map construction, we
introduced a penalty factor taking into account the standard deviation of the
constructed maps with respect to a linear fit to the map. The total normalised
standard deviation /), a,% in an exponent over e is used to suppress only
large deviations. The factor b in f(5,,) was left at b = 1. This ingredient of

a/2
the total measure also required compensation with the (ﬁﬁ) factor. And

similarly as for b, we obtained the best results for the minimal choice of a = 2.

In detail, the tree/sub-tree matching algorithm proceeds as follows: for
the two roots, referred to as (l)ower and (h)igher, the bifurcations belong-
ing to these roots, (j, k) respectively, are matched within a predefined depth
(j+/—d,k+/—d). This is a very important restriction on the search space,
since only the visible bifurcations (those for which the probability (30) can
be defined) are taken into consideration. Now we check whether the selected
pair (j, k) satisfles a number of criteria, ensuring a certain level of local scaling
consistency. In the current version of the algorithm, we choose the following
tests for the pairs bifurcations: they must lie on the same side of the root, the
probability of the bifurcation at the (l)ower root is higher than the threshold
parameter Ty, the correlation of the probabilities exceeds the current value
of the threshold parameter T,,,,, and the correlation of the wavelet transform
values of both bifurcations is positive.

If all the tests are passed, the two roots stemming from j and k are processed
in the same fashion as the h and [ roots above. The process, schematically
illustrated in Figure 24, continues recursively in a depth-first fashion. Appar-
ently there is no reason not to use the breath-first search here. In this case all
the bifurcations belonging to the considered lower and upper roots would be
processed before going down in hierarchy.

The thresholds T¢orp and Tpyop are then independently varied and the global
maximum of the measure is sought. The maps obtained from the match with
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FIGURE 24. The bifurcation matching algorithm. See text for description.

the parameters corresponding with the maximum measure are supposed to be
the most probable maps.

A convenient way of visualising the maps (22) is plotting the coordinates
z' and z of matched points against one another. In Figure 25, we show auto-
matically recovered maps between x and z' for the self-affine function shown in
Figure 7, using the tree matching algorithm. Indeed, the linearity of the maps
is evident.

Even though throughout this work we limited ourselves to linear transfor-
mations, we would like to point out here that the methodology presented also
works in case of small deviations from linearity. The ability to capture non-
linear behaviour can be of great value in applying this methodology to physical
sciences. As an example test case to test the ability of the algorithm to re-
cover non-linear maps, we generated an attractor with maps modulated with
z sin(z). The example result is shown in Figure 26 together with the plots of
the original maps. We considered the agreement of the experiment with the
original maps to be quite satisfactory.

5. A NOTE ON TWO-DIMENSIONAL EXTENSION

5.1. Fractal IFS functions in two-dimenstons

In this section, we will address only a few relevant facts about self-affine func-
tions over two-dimensional (or fractal 1 < D < 2) support. We will consider
continuous contraction transformations S; : R® — R?, in short to be called
maps, chosen in such a way that the self-affine set they define is a functional
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f(xl,x2)

FIGURE 27. The test case: Sierpinski triangle with non-uniformly distributed
measure.

mapping f: R? = R.
Let S, (1 <n < N) be an affine transformation represented in matrix notation
with respect to the coordinates (z;,x2,y) by

Iy Qpn bn 0 1 €n
Sl zo = ¢ dp, O o | + fn . (33)
y Yni Yn2 On y on

For the sub-transformation on the coordinates {1, 2} of the function F(z1,z2):
b T e
S At — an On 1 + n 34
en ( ) cn dn T2 fn (34)
which describes an arbitrary affine transformation in R?, we will require

O<oll=

n

where |5| = det S, which ensures that S,,, is a similitude and the transformed
surface does not vanish or flip over. We will also restrict S;, to be a set of
non-overlapping transformations:

where A is a compact set.
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Additional constraints can be specified for the purpose of generating a frac-
tal interpolation surface ensuring joining up of the transformed surfaces at the
interpolated points. 8 For the complete version of the IFS surfaces generation
scheme on two dimensional support, the reader may wish to consult Geronimo
et al. [14].

The extension of the wavelet transform to two dimensions is straightforward:
again the (real-valued) wavelet transform W' decomposes the function f(x) €
L2(R?) in the base of elementary wavelets created by the action of the affine
group on a single function ¥(x):

(¥ £)(3.b) = 3-;—] / dx £(x) U(3.b) (x) (35)

where
U8 byex) = 2((5) " (x - b)).

As before, the wavelet 1/(x) is often chosen to be well localised both in scale
and space, and if no directional sensitivity is required, uniform scaling in all
directions is a natural choice. The matrix S can then be reduced to two equal
scaling factors s on the diagonal and |S| = s. This is the choice we will favour
here.

The necessary condition for the local extrema of the wavelet transform
W f(s,xy,x2) of the function of two variables f(z;,z2) is zero of the partial
derivatives:

(W f)(s.21.x2) 0

&

SW ) serra)  _ 0 (36)
dzo - ?

which points are further classified according to the sufficient condition for local
extrema.

His.xy,x2) > 0 37
2(W f)(s.r1.02
LR < 0(>0) (37)

in the case of a local maximum (minimum), where H(-) is the Hessian

2

H() = DLW A DELW A - (DEL, W H()
The bifurcation case is defined by:

Equation (36)
{ H(s,xy,22) = 0. (38)

8 These conditions are, however, irrelevant for this work. In fact, for the sake of simplicity,

we will limit ourselves to examples without additional components in the function value
which translates to v, = 0 and oy = 0.
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scale

URE 28. Local maxima of the wavelet transform with associated bifurca-
s for the example from figure 1. The wavelet used is the Gaussian, m = 0.

The tree structure apparent in the maxima representation serves as basis
the parameter recovery algorithm utilised in the solution to the IFP. The
» construction is similar to that described for the one-dimensional case. The
t crucial step comprises the finding of the invariance of the bifurcation rep-
mntation. This can be done by means of tree matching, where the invariance
he representation is sought in the optimal match of the tree to its branches.
m the match of pairs of bifurcations found invariant, the parameters of (33)
estimated.

For an elaboration on the differences with the one-dimensional case, we
r the reader to [4]; here we will restrict ourselves to presenting and inter-
ting the results for the given example. The affine maps z{; 21 = f(z7,75)
resenting scaling and translation parameters of S;,, as shown in Figure 29.
expected from the diagonal character of Sy, for the Sierpiriski triangle the
sar dependence with consistent slope 1/0, = 1/0.5 shows in only one of the
rdinates.

A WORD OF CONCLUSION

e aim of this communication is to share our opinion that the application
the CWT based maxima and bifurcation representations provides an ex-
lent means of revealing renormalisation parameters of functions in one and
) dimensions. In particular, the inverse problem of the recovery of invariant
nsformations is shown to be feasible. The results presented should be con-
ered as a first step in the direction of the general approach - application of

149




L Quarterly

o' - i r s
M g R ,“ / '!
- 2 & P
S s Lo S
¥, g oY YAy
st A f te ¥ 7
xR P
H IR o, x17 ‘g‘ Fy e N
i L gt oF -
i 'y pt g &
H ;f" < j.'
i - »
i e kg
P ¥
Vs
i
- : §

FIGURE 29. The maps recovered from matching the bifurcations in the rep-
resentation in figure 2. Of the total of six two-dimensional maps, three maps
zz = f(z},z}) are shown in the leftmost figure. The Sierpinski triangle was
rotated in order to disconnect the maps. The projection along z{ in the upper
right shows consistent slope of 1/0, = 1/0.5 rate with respect to z% for all
three maps displayed. As expected from the diagonal S,,, for the Sierpiriski
triangle, the linear dependence shows in only one of the coordinates, which is
confirmed in the projection in the bottom right figure.
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FIGURE 30. The histogram of the parameters e, and f, shows the location
of the peaks on a triangle corresponding with the translation vectors of the
Sierpifiski triangle (left). The modes of the parameter a,, responsible for the

distribution of the measure on the triangle (right) show remarkable agreement
with the true values.
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the scheme to real-life examples will certainly bring serious challenges.
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